ВИТАМИНЫ: ВИТАМИН С - определение. Что такое ВИТАМИНЫ: ВИТАМИН С
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое ВИТАМИНЫ: ВИТАМИН С - определение

ОРГАНИЧЕСКОЕ ВЕЩЕСТВО, ЖИЗНЕННО НЕОБХОДИМЫЙ МИКРОНУТРИЕНТ
Витамин; Антивитамины; Жирорастворимые витамины; Водорастворимые витамины
  • Морковь содержит провитамин A — β-каротин
  • [[Казимир Функ]] — автор термина «витамин»
  • [[Кристиан Эйкман]] — один из основателей учения о витаминах
  • Лайнус Полинг]]
  • Лунин Николай Иванович]] — основоположник учения о витаминах
  • Поражение десен от цинги при дефиците витамина C
  • 2}} и С)</center>
Найдено результатов: 2499
ВИТАМИНЫ: ВИТАМИН С      
К статье ВИТАМИНЫ
Витамин С - аскорбиновая кислота, или противоцинготный витамин, - по своей структуре сходен с глюкозой, из которой его и получают в промышленности. В растворе витамин С нестабилен, особенно в щелочной среде. При длительном приготовлении пищи может разрушаться. Витамина С много в свежих фруктах и овощах.
У человека, человекообразных обезьян, морских свинок, плодоядных летучих мышей (семейство крылановых) и некоторых птиц витамин С, играющий, по-видимому, роль кофермента, должен поступать в организм с пищей. Другие животные могут вырабатывать его сами. Ежедневная потребность в этом витамине у здоровых людей составляет 30-60 мг.
витамин С         
  • Оптические изомеры]] аскорбиновой кислоты: <br>1a — ''L-''аскорбиновая кислота, <br>2a — ''L-''изоаскорбиновая кислота, <br>1b — ''D-''изоаскорбиновая кислота, <br>2b — ''D-''аскорбиновая кислота
  • перорального приёма]]
ВОДОРАСТВОРИМЫЙ ВИТАМИН
Витамин С; Е300; Аскорбат; Аскорбинка; Асвитол; Асковит; Цитравит; Витамин Ц; Витамин C; E300
см. Аскорбиновая кислота.
витамин         
м.
см. витамины.
витамины         
мн.
1) а) Органические соединения разнообразной химической природы, необходимые для нормального обмена веществ и жизнедеятельности организма.
б) Лекарственные препараты, содержащие такие соединения.
2) разг. Овощи, фрукты, содержащие такие соединения.
антивитамины         
мн.
Вещества, тормозящие действие витаминов в организме.
антивитамины         
1) структурные аналоги витаминов, блокирующие их биологическое действие; 2) вещества, препятствующие ассимиляции витаминов в организме.
Витамины         
(от лат. vita - жизнь)

группа органических соединений разнообразной химической природы, необходимых для питания человека, животных и других организмов в ничтожных количествах по сравнению с основными питательными веществами (белками, жирами, углеводами и солями), но имеющих огромное значение для нормального обмена веществ и жизнедеятельности.

Первоисточником В. служат главным образом растения (см. Витаминоносные растения). Человек и животные получают В. непосредственно с растительной пищей или косвенно - через продукты животного происхождения. Важная роль в образовании В. принадлежит также микроорганизмам. Например, микрофлора, обитающая в пищеварительном тракте жвачных животных, обеспечивает их витаминами группы В. Витамины поступают в организм животных и человека с пищей, через стенку желудочно-кишечного тракта, и образуют многочисленные производные (например, эфирные, амидные, нуклеотидные и др.), которые, как правило, соединяются со специфическими белками и образуют многие ферменты, принимающие участие в обмене веществ (См. Обмен веществ). Наряду с ассимиляцией в организме непрерывно совершается диссимиляция В., причём продукты их распада (а иногда и малоизменённые молекулы В.) выделяются наружу. Недостаточность снабжения организма В. ведёт к его ослаблению (см. Витаминная недостаточность), резкий недостаток В. - к нарушению обмена веществ и заболеваниям - авитаминозам (См. Авитаминозы), которые могут окончиться гибелью организма. Авитаминозы могут возникать не только от недостаточного поступления В., но и от нарушения процессов их усвоения и использования в организме.

Основоположник учения о В. русский врач Н. И. Лунин установил (1880), что при кормлении белых мышей только искусственным молоком, состоящим из казеина, жира, молочного сахара и солей, животные погибают. Следовательно, в натуральном молоке содержатся и другие вещества, незаменимые для питания. В 1912 польский врач К. Функ, предложивший само название "В.", обобщил накопленные к тому времени экспериментальные и клинические данные и пришёл к выводу, что такие заболевания, как Цинга, Рахит, Пеллагра, Бери-бери, - болезни пищевой недостаточности, или авитаминозы. С этого времени наука о В. (витаминология) начала интенсивно развиваться, что объясняется значением В. не только для борьбы со многими заболеваниями, но и для познания сущности ряда жизненных явлений. Метод обнаружения В., примененный Луниным (содержание животных на специальной диете - вызывание экспериментальных авитаминозов), был положен в основу исследований. Было выяснено, что не все животные нуждаются в полном комплексе В., отдельные виды животных могут самостоятельно синтезировать те или иные В. В то же время многие плесневые и дрожжевые грибы и различные бактерии развиваются на искусственных питательных средах только при добавлении к этим средам вытяжек из растительных или животных тканей, содержащих витамины. Таким образом, витамины необходимы для всех живых организмов.

Изучение В. не ограничивается обнаружением их в естественных продуктах с помощью биологических тестов и другими методами. Из этих продуктов получают активные препараты В., изучают их строение и, наконец, получают синтетически. Исследована химическая природа всех известных В. Оказалось, что многие из них встречаются группами по 3-5 и более родственных соединений, различающихся деталями строения и степенью физиологической активности. Было синтезировано большое число искусственных аналогов В. с целью выяснения роли функциональных групп. Это способствовало пониманию действия В. Так, некоторые производные В. с замещенными функциональными группами оказывают на организм противоположное действие, по сравнению с В., вступая с ними в конкурентные отношения за связь со специфическими белками при образовании ферментов или с субстратами воздействия последних (см. Антивитамины).

В. имеют буквенные обозначения, химические названия или названия, характеризующие их по физиологическому действию. В 1956 принята единая классификация В., которая стала общеупотребительной.

Наличие химически чистых В. дало возможность подойти к выяснению их роли в обмене веществ организма. В. либо входят в состав ферментов, либо являются компонентами ферментативных реакций. При отсутствии В. в организме нарушается деятельность ферментных систем, в которых они участвуют, а следовательно, - и обмен веществ. Известно несколько сот ферментов, в состав которых входят В., и огромное количество катализируемых ими реакций. Многие В. - преимущественно участники процессов распада пищевых веществ и освобождения заключённой в них энергии (витамины B1, В2, PP и др.). Участвуют они и в процессах синтеза: B6 и В12 - в синтезе аминокислот (См. Аминокислоты) и белковом обмене, В3 (пантотеновая кислота) - в синтезе жирных кислот и обмене жиров, Вс (фолиевая кислота) - в синтезе пуриновых и пиримидиновых оснований и многих физиологически важных соединений - ацетилхолина, глутатиона, стероидов и др. Менее изучено действие жирорастворимых В., однако несомненно их участие в построении структур организма, например в образовании костей (витамин D), развитии покровных тканей (витамин А), нормальном развитии эмбриона (витамин Е и др.). Таким образом, витамины имеют огромное физиологическое значение. Выяснение физиологической роли В. позволило использовать их для витаминизации продуктов питания, в лечебной практике и в животноводстве. Особенно широко стали применяться В. после освоения их промышленного синтеза. См. также Витаминные препараты.

Лит.: Кудряшов Б. А., Биологические основы учения о витаминах, М., 1948 (имеется библ.); Валдман A. Р., Значение витаминов в питании сельскохозяйственных животных и птицы, Рига, 1957; Березовский В. М., Химия витаминов, М., 1959; Труфанов А. В., Биохимия и физиология витаминов и антивитаминов, М., 1959; Шилов П. И. и Яковлев Т. Н., Основы клинической витаминологии, Л., 1964 (имеется библ.); Букин В. Н., Пантамат кальция (витамин B15), М., 1968; Vitamine. Chemie und Biochemie, Hrsg. von J. Fragner, Bd 1-2, Jena, 1964-65 (имеется библ.); Wagner A. F., Folkers K., Vitamins and coenzymes, N. Y., [1964]; The vitamins: chemistry, physiology, pathology, methods, 2 ed., ed. W. Н. Sebrell, R. S. Harris, v. 1, N. Y. - L., 1967.

В. Н. Букин.

Получение витаминов. В. получают главным образом синтетически и лишь в некоторых случаях отдельные стадии в цепи синтеза выполняются биологическими способами. Производство концентратов В. из продуктов растительного или животного происхождения почти полностью потеряло своё значение.

Получение В. относится к тонкому органическому многостадийному синтезу. Химическими методами синтезируют следующие В.: А, B1, B2, В3, B6, Вс, С, D2, D3, Е, К, PP, а В12 - ферментативными методами микробиологического синтеза. Ферментацией пользуются также на одной из стадий синтеза витамина С. Этот В. в виде индивидуального кристаллического вещества высокой степени чистоты образуется при восстановлении D-глюкозы в D-copбит. Последний ферментативно окисляют в L-copбозу, которую после ряда операций превращают в витамин С (I). Витамин А (ретинол) синтезируют, исходя из псевдоионона (II), который циклизуют в β-ионон и затем через ряд сложных операций превращают в ретинол (III). Псев-доионон служит также исходным сырьём для многостадийного синтеза изофитола, используемого при получении чистого витамина Е (α-токоферилацетата, IV).

Витамин K3 (2-метил-1,4-нафтохинон) получают окислением 2-метилнафталина. Витамином K3 пользуются в медицинской практике в виде растворимой в воде натриевой соли бисульфитного производного (V).

Производство витамина B1 (тиамина, VI) основано на конденсации 2-метил-4-амино-5-хлор (бром) метилпиримидина с 4-метил-5-β-оксиэтилтиазолом. Кофермент витамина B1 - кокарбоксилаза (VII), или дифосфорный эфир тиамина, применяемый для лечения заболеваний сердца, получают фосфорилированием тиамина с последующей очисткой на ионообменных смолах и кристаллизацией.

Витамин В2 (рибофлавин, VIII) образуется при культивировании Eremothecium ashbyii и других микроорганизмов без выделения в виде сухой биомассы (с использованием только для кормления с.-х. животных), а синтетический рибофлавин (применяемый в медицине) получают в виде кристаллического продукта деструктивным окислением D-глюкозы (из кукурузного крахмала) в D-apaбоновую кислоту и рядом других операций превращают в конечный продукт - жёлто-оранжевые кристаллы высокой степени чистоты. Важное производное рибофлавина - его кофермент рибофлавин-5'-фосфат натрия (IX, R = Na), применяемый для инъекций, получают фосфорилированием рибофлавина, а другой кофермент - ФАД (IX, R - остаток аденозин-5'-фосфата) получают конденсацией рибофлавина-фосфата и аденозин-5'-фосфата.

Витамин B6 (пиридоксин, X, а) синтезируют, конденсируя метоксиацетил-ацетон с циануксусным эфиром в присутствии аммиака в 2-метил-4-метоксиметил-5-циан-6-оксипиридин, который подвергают нитрованию, затем рядом операций превращают в пиридоксин. Известен также и другой способ получения пиридоксина - через 4-метил-5-пропоксиоксазол диеновым синтезом с формалем бутен-2-диола-1,4. Другими формами B6 являются пиридоксол (X, б) и пиридоксамин (X, в).

Классификация и краткая характеристика витаминов

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

| Новая номен- | Прежние обозначения | Физиологическая роль | Основные пищевые источники | Суточная норма |

| клатура | | | | для взрослого |

| | | | | человека, мг |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Жирорастворимые витамины |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Ретинол | Витамин A1, аксероф-тол, | Входит в состав зрительного пурпура, | Сливочное масло, молоко, | 1,5-2,5 |

| | противоксерофталь- | усиливает остроту зрения при слабом ос- | сыр, яичный желток, печень, икра, | |

| | мический витамин | вещении, укрепляет эпителиальные тка- | рыбьи жиры, а также ка-ротин | |

| | | ни, необходим для нормального роста | растений, из к-рого в ор-ганизме | |

| | | | образуется витамин А | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Дегидроретинол | Витамин А2 | Функции те же, активность 40\% от активности | Жир печени пресноводных | Не установлена |

| | | витамина А1 | рыб | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Эргокальциферол | Витамин D2, кальцифе-рол, | Повышает усвоение пищ. кальция, усиливает | Синтетич. продукт, получает- | Детям по |

| | противорахитичес-кий | реабсорбцию фосфора в поч-ках, необходим | ся путём ультрафиолетового | 0,02-0,04 |

| | витамин | для роста костей | облучения эргостерола дрожжей | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Холекальциферол | Витамин Д3 | Функции те же, активность для чело- | Молоко (немного), сливочное | Та же |

| | | века и большинства животных одина- | масло, яичный желток, значи- | |

| | | кова с витамином D2, для птиц в 30 раз выше | тельно больше в жирах печени рыб; | |

| | | | образуется в коже под дей-ствием | |

| | | | ультрафиолетовых лучей | |

| | | | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| α-, β-, γ-токофе- | Витамин Е, противо- | Предохраняет липоидные вещества клетки от | Растит. масла, салатные ово-щи; в | Не установлена |

| ролы | стерильный витамин | окисления, при длит. недо- | животных продуктах мало | |

| | | статке у животных наблюдаются мышеч-ная | | |

| | | дистрофия, бесплодие | | |

| | | | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Филлохинон | Витамин К1, 2-метил- | Участвует в образовании протромбина | Растит. продукты, особенно | 2 |

| | З-фитил-1,4-нафтохи-нон, | в печени, повышает свёртываемость крови | зелёные листья; в животных | |

| | противогеморраги-ческий | | продуктах мало | |

| | витамин | | | |

| | | | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Фарнохинон | Витамин K2, 2-метил- | Действие то же | Выделен из бактерий | Не установлена |

| | З-дифарнезил-1, 4- | | | |

| | нафтохинон | | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Викасол | Витамин Кз, бисуль-фитное | Действие то же, активнее витамина К1 в два | Синтетич. продукт | 1 |

| | производное 2-метил-1,4- | раза | | |

| | нафтохинона | | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Водорастворимые витамины |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Аскорбиновая | Витамин С, противо- | Участвует в образовании коллагена, в | Свежие овощи, фрукты, ягоды | 70-100 |

| к-та | цинготный витамин | восстановлении фолиевой к-ты в кофер-мент | | |

| | | и в др. окисительно-восстановит. процессах | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Биофлавоноиды | Витамины Р, капил- | Комплекс веществ, укрепляющих стен- | Цитрусовые, чёрная смороди-на, | 50-100 |

| | ляроукрепляющие | ку капиллярных сосудов, - рутин, геспе- | плоды шиповника, черно-плодной | |

| | витамины | ридин, катехины. Активен в присутствии | рябины, чай (особенно зелёный) | |

| | | аскорбиновой кислоты | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Тиамин | Витамин В1, аневрин, | Входит в состав пируватдекарбоксила- | Дрожжи, печень, хлеб из му- | 1,5-2 |

| | противоневритический | зы, расщепляющей пировиноградную | ки грубого помола, гречневая и | |

| | витамин | к-ту, при его отсутствии возникает В1- | овсяная крупы | |

| | | авитаминоз (бери-бери) | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Липоевая к-та | Тиоктовая к-та | Участвует совместно с тиамином в оки- | Растит. продукты | Не установлена |

| | | слительном декарбоксилировании пиру-вата с | | |

| | | образованием уксусной к-ты и | | |

| | | СО2 | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Никотинамид | Витамин PP, ниацин-амид, | Входит в состав окислительно-восста-новит. | Печень, почки, мясо, дрожжи, | 15-25 |

| | противопеллагри-ческий | ферментов--дегидрогеназ | молоко, горох, бобы | |

| | витамин | | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Рибофлавин | Витамин В2, лактофла-вин | Входит в состав ферментов, осущест- | Молочные и мясные продукты, | 2-2,5 |

| | | вляющих транспорт водорода от деги- | салатные овощи | |

| | | дрогеназ к кислороду | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Пиридоксин | Витамин B6 | Входит в состав ферментов, катализи- | Мясо, рыба, молоко, печень | 2-3 |

| | | рующих переамини-рование и декарбок- | кр. рог. скота, дрожжи и мн. растит. | |

| | | силирование аминокислот | продукты | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Пантотеновая к-та | Витамин Вз | Входит в состав кофермента А, при участии | Широко распространён во всех | 5-10 |

| | | к-рого происходит синтез жир- | растениях, животных тканях и | |

| | | ных кислот, стероидов, ацетилхолина и | микроорганизмах | |

| | | мн. др. соединений | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Фолиевая к-та | Групповое обозначение | Входит в состав ферментов, участвую-щих в | Печень, почки, дрожжи, са-латные | 0,1-0,5 |

| | моно-, три- и гептаглу- | синтезе пуриновых и пиримидино-вых | овощи | |

| | таминовых кислот, вита-мин | соединений, нек-рых аминокислот (серина, | | |

| | ВС, фолацин | метионина). Вместе с витамином В12 | | |

| | | участвует в процессе кроветворения | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Цианкобаламин | Витамин B12, крове-творный | Входит в состав мн. ферментов, уча- | Печень, почки, меньше - мясо и | 0,005-0,01 |

| | фактор | ствующих в синтезе холина, креатина, | молоко | |

| | | нуклеиновых кислот и др. Наиболее ак-тивный | | |

| | | противонемич. препарат | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| n-Аминобензой- | n-Аминобензойная | Ростовой фактор для мн, микроорга-низмов, | Дрожжи, печень, семена пше-ницы, | Не установлена |

| ная к-та | к-та, ПАБ | стимулирует выработку витами-нов кишечной | риса | |

| | | микрофлорой. Входит в состав фолиевой к- | | |

| | | ты | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Биотин | Витамин Н | Входит в состав ферментов, катализи- | Печень, почки, дрожжи, яич- | 0,01 |

| | | рующих карбоксилирование (присоеди-нения | ный желток, растит. продукты | |

| | | CO2 с удлинением цепочки) жир- | | |

| | | ных кислот и др. | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Мезоинозит | Инозит | Ростовой фактор для дрожжей; его | Широко распространён в рас- | Не установлена |

| | | недостаток вызывает остановку роста мо- | тениях в виде солей инозитфос- | |

| | | лодых животных | форной к-ты - фитина | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Холин-хлорид | Холин-хлорид | Источник метильных групп для син- | Семена злаков, бобовых, свёк-ла и | 500-1000 |

| | | теза мн. соединений, участвует в синте- | др. растит. продукты, дрожжи, | |

| | | зе фосфолипидов | печень | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Оротовая к-та | Витамин B13 | Предшественник пиримидиновых осно-ваний; | Растит. продукты, молоко | Леч. дозы |

| | | используется в процессах синтеза | | 1000-1500 |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Пангамовая к-та | Витамин B15 | Повышает окислит. обмен, обладает | Семена злаков, печень, дрож-жи | Леч. дозы 200- |

| | | липотропным и детоксицирующим дей-ствием | | 300 |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| S-мeтилметионин- | Противоязвенный фак-тор, | Способ-ствует заживле-нию пептических язв | Соки свежих овощей - капу-сты, | Леч. дозы |

| сульфоний- | витамин U (от лат. ulcus - | желудка и двенадцатиперстной кишки | шпината, сельдерея и др. | 200-250 |

| хлорид | язва) | | | |

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Витамин Вс (фолиевую кислоту, XI) синтезируют одностадийной конденсацией 2,4,5-триамино-6-оксипиримидина, 1,1,3-трихлорацетона и n-аминобензоил-L-глутаминовой кислоты.

Витамин PP (никотиновую кислоту, XII) получают окислением β-пиколина (выделяемого из каменноугольного дёгтя), ресурсы которого ограниченны, а также окислением хинолина или 2-метил-5-этилпиридина. Для медицинских целей пользуются, кроме никотиновой кислоты, никотинамидом (XIII).

Витамин B3, оптически активная D-пантотеновая кислота

HOCH2C (CH3)2CH (OH) CONH (CH2)2COOH,

для медицинских целей применяется в виде кальциевой соли.

Для нужд животноводства нет необходимости в разделении на промежуточных ступенях синтеза рацемата пантолактона на оптические антиподы. Синтез рацемического пантотената кальция состоит в альдольной конденсации изобутираля и формальдегида с последующим превращением в пантолактон, затем в его конденсации с β-аланином, приводящей к образованию конечного продукта.

Витамин B12 (цианкобаламин), вещество весьма сложного строения, получают с помощью микробиологического синтеза с Propionbacterium Shermanii на углеводо-белковых средах - отходах свеклосахарного производства (мелассе). Культивирование проводят в присутствии 5,6-диметил-бензимидазола. Витамин выделяют в кристаллическом виде. Имеет значение также технология брожения термофильными метанобразующими бактериями при 55-57 °С барды ацетоновых и спиртовых заводов, работающих на мелассе.

Витамин D2 (эргокальциферол), имеющий также весьма сложное строение, выделяют из пекарских дрожжей в виде эргостерина, который затем подвергают фотоизомеризации. Для медицинских целей эргокальциферол очищают от побочных веществ, образующихся при фотоизомеризации. Витамин D3 (холекаль-циферол) получают из холестерина - продукта мясной промышленности. Его бензоилируют, затем подвергают бромированию и другим операциям (см. также Витаминные препараты и Витаминная промышленность).

В. М. Березовский.

Витамины в животноводстве. Значение В. в кормлении с.-х. животных велико. При их недостатке или отсутствии задерживается рост и развитие молодняка, снижается сопротивляемость организма различным заболеваниям, уменьшается продуктивность. С недостаточным витаминным питанием у с.-х. животных нередко связаны яловость, аборты, низкая плодовитость. Потребность в В. зависит от вида животных, возраста, физиологического состояния, продуктивности, условий кормления и содержания, а также от запаса витаминов в организме. Особенно велика эта потребность у молодняка, беременных и лактирующих самок, высокопродуктивных и племенных животных.

Каротина требуется (мг на 100 кг живой массы в сутки): коровам стельным 60-80, лактирующим 50-60, быкам-производителям 70-100, овцам суягным и подсосным 20-40, баранам 40-60, свиноматкам супоросным и подсосным 20-30, хрякам 50-60, рабочим лошадям 20-25, племенным 40-50; витамина D2 или D3 (ИЕ на 100 кг живой массы в сутки): крупному рогатому скоту 1000-1500, овцам 1000, свиньям 1000. Витамины группы В жвачным животным не нормируют, так как они почти полностью покрывают свою потребность в витаминах этой группы благодаря способности бактерий рубца синтезировать их. В рационе свиней нормируют (мг на 100 кг живой массы) витамина В2 - 10, B12 - 0,04, PP - 50-75. Потребность в В. для птицы рассчитывается на т концентратов: витамина А - 4,5 г, D2 - 30 млн. ИЕ, D3 - 1 млн. ИЕ, B12 - 12 мг, PP - 15 мг, В2 - 4 мг, пантотеновой кислоты -10 г, холин-хлорида - 1000 г.

Основной источник В. для животных - корма. Поэтому для правильной организации кормления необходимо знать наряду с потребностью в В. содержание их в кормах. Нормирование витаминного питания животных осуществляют подбором кормов, обогащением рационов витаминными кормами (См. Витаминные корма) или концентратами витаминов, выпускаемыми промышленностью. В состав комбикормов, выпускаемых промышленностью, включают все необходимые В.

Лит.: Коутс М. Е. [и др.]. Витамины в питании животных, в кн.: Новое в кормлении сельскохозяйственных животных. Сб. переводов, т. 2, М., 1958; Букин В. Н., Проблема витаминов в животноводстве и пути её решения, в кн.: Вопросы химизации животноводства, М., 1963; его же. Витамины в животноводстве, М., 1966.

АНТИВИТАМИНЫ         
вещества, препятствующие использованию витаминов живой клеткой вследствие их разрушения, связывания в неактивные формы, замещения соединениями, близкими к витаминам по химическому строению, но обладающими противоположным биологическим действием.
витамин         
ВИТАМ'ИН, витамина, ·муж. (от ·лат. vita - жизнь) (биол.). Азотистое вещество, содержащееся в растительной и животной пище, необходимое для правильного питания.
ВИТАМИНЫ         
органические вещества, необходимые в небольших количествах в пищевом рационе как человека, так и большинства позвоночных. Синтез витаминов, как правило, осуществляется растениями, а не животными. Ежедневная потребность человека в витаминах составляет лишь несколько миллиграммов или микрограммов. В отличие от неорганических веществ витамины разрушаются при сильном нагревании. Многие витамины нестабильны и "теряются" во время приготовления пищи или при обработке пищевых продуктов.
В начале 20 в. считалось, что ценность пищи определяется главным образом ее калорийностью. Этот взгляд пришлось пересмотреть, когда были описаны первые эксперименты, показывающие, что, если из рациона животных исключить ряд продуктов, у них развиваются болезни, обусловленные пищевой недостаточностью; при этом потребление даже небольших количеств определенных пищевых продуктов или их экстрактов позволяло предотвращать или излечивать подобные заболевания. Оказалось, что благотворное действие таких добавок зависит от присутствия ранее неизвестных веществ, которые встречаются в печени, молоке, зелени и других продуктах, обладающих "защитным" эффектом. Последующие эксперименты привели к открытию как самих этих веществ - витаминов, так и их роли в жизнедеятельности организма.
Название "витамины", предложенное в 1911 американским биохимиком польского происхождения К.Функом, вскоре стало общеупотребительным. В ходе экспериментальных исследований витамины были выделены в чистом виде из пищевых продуктов и была определена их химическая структура, что позволило синтезировать и получать их в промышленных масштабах. Искусственно полученные витамины ничем не отличаются от тех, что содержатся в пище. Они используются в качестве лекарств для профилактики болезней пищевой недостаточности и в качестве добавок для повышения питательной ценности пищевых продуктов и кормов сельскохозяйственных животных. Иногда люди принимают слишком много витаминов, полагая, что таким образом улучшают свое здоровье. Для подобного мнения нет никаких оснований, а избыточный прием витаминов A и D может иметь вредные последствия.
Витамины подразделяют на два класса: жирорастворимые и водорастворимые. Жирорастворимые витамины растворяются в бензине, эфире и жирах. В отличие от них водорастворимые витамины не растворяются в жирах, но растворимы в воде и спирте. Витамины A, D, E и K - жирорастворимые; все остальные - водорастворимые.
Все витамины, кроме витамина D, могут быть получены при хорошо сбалансированном питании из обычных пищевых продуктов. В некоторых случаях, например при беременности, потребность в витаминах возрастает, и тогда рекомендуется принимать витамины дополнительно, используя препараты, например, в виде капсул.
Некоторые витамины организм получает не только с пищей, но и за счет "внутрикишечного синтеза", осуществляемого бактериями, которыми всегда изобилует кишечник. Так образуется ряд витаминов группы B и витамин K, однако в количественном отношении их синтез и доступность для использования могут варьировать. У жвачных животных, например, доля витаминов группы B, получаемых за счет бактериального синтеза, весьма заметна. С другой стороны, выяснилось, что кишечные бактерии могут, по-видимому, конкурировать с организмом хозяина за питательные вещества. Так, животные, которых выращивали в стерильных условиях или кормили пищей с добавками антибиотиков, росли быстрее, чем обычно. У человека внутрикишечно синтезируется значительное количество одного из витаминов группы В, а именно биотина, который затем поступает в кровь.
БОЛЕЗНИ, ОБУСЛОВЛЕННЫЕ ВИТАМИННОЙ НЕДОСТАТОЧНОСТЬЮ
Зеленые растения - это живые организмы, способные под действием света производить из простых химических соединений все необходимые им вещества: белки, жиры, углеводы, пигменты и множество других сложных органических соединений. В отличие от растений животные неспособны производить для себя пищевые вещества. Более того, они не могут сами синтезировать и некоторые сложные молекулы - витамины, которые необходимы для поддержания нормального обмена веществ. В тех случаях, когда животные не получают с пищей витамины, у них развиваются болезни, обусловленные витаминной недостаточностью ("авитаминозом"). Большинство диких животных питается достаточно разнообразно, и такие болезни у них не возникают. Человек же часто не склонен к сбалансированному питанию и, имея возможность выбора, предпочитает рафинированную и легкую пищу, часто обедненную витаминами. Для наименее обеспеченных групп населения обычно характерен однообразный (и скудный) пищевой рацион. В результате возникают болезни витаминной недостаточности. Их причины были установлены лишь в 20 в., после чего профилактика этих заболеваний перестала вызывать трудности.
Ксерофтальмия. По свидетельствам современников, на протяжении 19 и в начале 20 в. ксерофтальмия ("сухой глаз") часто наблюдалась у страдающих от недоедания и особенно у голодающих детей. При этом заболевании прекращаются выработка и выделение секрета слезных желез, что вызывает сухость глаз и помутнение роговицы. Заболевание способствует инфекциям, которые могут привести к хроническим нарушениям зрения и даже к слепоте. В 1904 японский врач М.Мори предложил лечить это заболевание рыбьим жиром и печенью цыпленка. Однако его рекомендации не были по достоинству оценены. Во время Первой мировой войны ксерофтальмия широко распространилась среди детей Дании, что было вызвано недостаточностью витамина А. Дело в том, что датчане экспортировали сливочное масло, так что дети в этой стране питались только маргарином и обезжиренным молоком, которые не содержали витамина А. После того как К.Блок показал, что болезнь поддается лечению рыбьим жиром и сливочным маслом, датское правительство сразу же ограничило экспорт масла. Эта мера незамедлительно привела к спаду заболеваемости ксерофтальмией. Вся эта цепь событий вызвала огромный интерес у диетологов. Масло повсеместно стали признавать продуктом "защитного" действия. Многие лаборатории занялись выделением вещества, названного "жирорастворимым веществом A", которое и определяло благотворное действие масла и рыбьего жира.
В конце концов, было обнаружено, что один из лучших источников витамина A - жир, выделенный из печени акулы галеус. Один грамм этого жира содержит столько же витамина A, сколько 6 кг масла. Однако собственно витамин A составляет лишь 5% общего веса жира. Вскоре витамин был выделен высоковакуумной перегонкой, а затем химически синтезирован. Тем временем выяснилось, что растительный пигмент бета-каротин тоже предупреждает развитие недостаточности витамина A. Парадокс заключался в том, что каротин - пигмент темно-красного цвета, а высокоэффективные концентраты витамина A из рыбьего жира имеют бледно-желтую окраску. Ученые обнаружили, что в стенке тонкого кишечника животных каротин превращается в витамин A, при этом молекула каротина расщепляется на две одинаковые половины и утрачивает окраску. Каждая из двух половин соответствует молекуле витамина A. Сегодня в маргарин, исходно не содержащий витамин A, его специально добавляют.
Рахит. До 1920 рахитом страдали главным образом дети северных стран. При этом заболевании нарушается процесс минерализации (кальцификации) костной ткани; внешними признаками рахита служат саблевидные голени, вывернутые внутрь колени, деформированные ребра и череп, нездоровые зубы. Особая подверженность рахиту детей заставила обратить внимание на ту роль, которую кальций и фосфор играют в детском возрасте, когда происходит рост костей, состоящих в значительной мере из фосфата кальция. В начале 20 в. было показано, что рахит можно лечить солнечным светом, причем эффективной оказалась лишь ультрафиолетовая часть спектра. Механизм такого воздействия предстояло раскрыть, поскольку очевидно, что сам по себе солнечный свет не может поставлять организму кальций и фосфор. Со временем выяснилось, что лечебное действие оказывают также печень трески (поначалу народное средство) и рыбий жир. Значительному прогрессу в изучении рахита способствовали лабораторные эксперименты с крысами. В 1924 было установлено, что некоторые продукты приобретают способность излечивать рахит при обработке их ультрафиолетовым светом. Эти факты помогли чуть позже обнаружить, что под действием ультрафиолетового света в коже образуется биологически активное вещество, витамин D3, который является основным регулятором обмена кальция и фосфора в костях. См. также РАХИТ
.
Бери-бери. Эта болезнь была так широко распространена в восточных странах до начала 20 в., что считалась одной из главных в мире. У заболевших происходит поражение нервной системы, что приводит к слабости, потере аппетита, повышенной возбудимости и параличу с весьма высокой вероятностью смертельного исхода. Бери-бери часто страдали японские моряки. Только в 1884 японский диетолог Т.Такаки заметил, что заболевания можно избежать, если пищевой рацион моряков сделать более разнообразным и включить в него овощи. В 1890-х годах голландский врач Х.Эйкман обнаружил, что болезнь возникает при употреблении в качестве основной пищи полированного риса и что сходное заболевание, полиневрит, можно вызвать у кур, если кормить их только полированным рисом. Полированный рис получают путем удаления наружных оболочек рисовых зерен. Оказалось, что идущие в отбросы оболочки обладают лечебным действием. После длительных усилий ученым удалось выделить в небольших количествах из дрожжей и рисовых оболочек кристаллическое вещество, которое содержало серу. Это вещество, витамин В1, или тиамин, предупреждало и излечивало бери-бери, а отсутствие его в полированном рисе служило причиной заболевания. Тиамин был исследован химическими методами, и в 1937 его синтезировали. В настоящее время синтетический тиамин добавляют к полированному рису и белой муке.
Пеллагра. Из всех болезней, связанных с витаминной недостаточностью, пеллагра в свое время особенно часто наблюдалась в США. Хотя это заболевание было впервые описано в начале 18 в. в Италии, где и получило свое название, с начала 20 в. оно широко распространилось в США. Чаще всего пеллагрой страдали бедняки из сельских районов, которые питались очень однообразно, в основном кукурузой и жирным мясом. При пеллагре наблюдаются понос, рвота, головокружение, дерматит и другие повреждения кожи, отек языка с развитием изъязвлений преимущественно под ним, а также на деснах и слизистой нижней губы, потеря аппетита, головная боль, депрессия и слабоумие. Страдавших этим заболеванием часто направляли в больницы для умалишенных. В 1937 было установлено, что от пеллагры излечивают никотиновая кислота (ниацин) или ее амид (никотинамид). Хотя никотиновую кислоту выделили из дрожжевого экстракта еще в 1912, до 1937 никто не подозревал, что именно это вещество может быть использовано для профилактики и лечения пеллагры. Изменение рациона питания привело к почти полному исчезновению пеллагры в США.
Мегалобластная анемия. У животных эритроциты и лейкоциты вырабатываются в костном мозге. Поскольку время жизни этих клеток невелико, костный мозг должен постоянно их вырабатывать. Процесс образования новых кровяных клеток носит название гемопоэза. Для того чтобы он шел нормально, необходимо присутствие двух витаминов, и если хотя бы одного из них нет, костный мозг подвергается изменениям (видимым под микроскопом) и вместо эритроцитов начинает производить аномальные клетки - мегалобласты. В результате развивается мегалобластная анемия (см. АНЕМИЯ). Одну из форм этого заболевания называют пернициозной, т.е. злокачественной, анемией, поскольку в отсутствие лечения она всегда имеет смертельный исход. До 1920 не знали ни одного средства лечения пернициозной анемии. Впоследствии, однако, было обнаружено, что в случаях потребления большого количества печени болезнь принимает более легкую форму. Столь же эффективны оказались концентрированные экстракты печени, в особенности при внутримышечном введении: создавалось впечатление, что усвоению этих экстрактов, принятых через рот, что-то мешает. В конце концов причина была найдена: в желудке больных пернициозной анемией не вырабатывался т.н. внутренний фактор, входящий в состав желудочного сока и необходимый для всасывания витамина В12. В настоящее время для лечения этого заболевания назначают инъекции витамина В12, т.е. того витамина, который присутствует в концентрированных экстрактах печени.
В начале 1930-х годов установили, что в тропических странах беременные женщины часто страдают мегалобластной анемией, которая не поддается лечению инъекциями концентрированных экстрактов печени. Однако заболевание излечивалось при потреблении сырой печени или экстрактов дрожжей. Анемию удалось искусственно вызвать у обезьян и кур; вещество, пригодное для ее профилактики и лечения, вскоре выделили как из печени, так и из дрожжей, и химически синтезировали. Оказалось, что это вещество - фолиевая кислота - играет значительную роль во многих биохимических процессах, особенно в синтезе нуклеиновых кислот.
Цинга. Многие века моряки и путешественники страдали от цинги - очень тяжелого заболевания, при котором человек сильно худеет, испытывает постоянную усталость и боли в суставах. Болезнь часто заканчивалась смертельным исходом. В 1536 во время зимней экспедиции Жака Картье по Южной Канаде 26 его спутников умерли от цинги. Остальные путешественники вылечились с помощью водного экстракта сосновой хвои - средства, которое использовали индейцы. Двести лет спустя хирург британского флота Дж.Линд показал, что болезнь моряков можно лечить свежими овощами и фруктами, и с 1795 на всех британских кораблях стали добавлять к рациону сок цитрусовых. См. также ЦИНГА
.
Прошло еще столетие, прежде чем цингу стали изучать в лабораториях. В 1907 обнаружили, что ее можно искусственно вызвать у морских свинок (у других лабораторных животных заболевание не развивалось), если кормить их только овсяными зернами и отрубями. Излечивать морских свинок от цинги удавалось лимонным соком, однако выделенное из лимонного сока активное вещество в чистом виде быстро разлагалось на воздухе. Только в 1931 был получен в кристаллической форме витамин С, который излечивал морских свинок от цинги. Его удалось выделить из лимонного сока, коры надпочечников и сладкого перца. По своей структуре это вещество, названное аскорбиновой кислотой, оказалось родственным гексозам. Вскоре его синтезировали химическим путем, после чего было быстро налажено дешевое производство нового витамина.
См. также:

Википедия

Витамины

Витами́ны (от лат. vita «жизнь» + амин) — группа органических соединений разнообразной химической природы, объединённая по признаку абсолютной необходимости их для гетеротрофного организма в качестве составной части пищи (в общем случае — из окружающей среды). Автотрофные организмы также нуждаются в витаминах, получая их либо путём синтеза, либо из окружающей среды. Так, витамины входят в состав питательных сред для выращивания организмов фитопланктона. Большинство витаминов являются коферментами или их предшественниками.

Витамины содержатся в пище в очень небольших количествах и поэтому относятся к микронутриентам наряду с микроэлементами. К витаминам не относят не только микроэлементы, но и незаменимые аминокислоты и незаменимые жиры.

Из-за отсутствия точного определения к витаминам в разное время причисляли разное количество веществ. На середину 2018 года известно 13 витаминов.

Что такое ВИТАМИНЫ: ВИТАМИН С - определение